
Package ‘sqltargets’
October 2, 2024

Type Package

Title 'Targets' Extension for 'SQL' Queries

Version 0.2.1

Maintainer David Ranzolin <daranzolin@gmail.com>

Description Provides an extension for 'SQL' queries as separate file
within 'targets' pipelines. The shorthand creates two targets,
the query file and the query result.

License MIT + file LICENSE

Encoding UTF-8

Imports cli, DBI, fs, glue, jinjar, purrr, readr, rlang, stringr,
tarchetypes, targets, withr

URL https://github.com/daranzolin/sqltargets

BugReports https://github.com/daranzolin/sqltargets/issues

RoxygenNote 7.2.1

Suggests testthat (>= 3.0.0), RSQLite (>= 2.2.0)

Config/testthat/edition 3

NeedsCompilation no

Author David Ranzolin [aut, cre, cph]

Repository CRAN

Date/Publication 2024-10-02 04:10:02 UTC

Contents
sqltargets . 2
sqltargets_option_get . 2
tar_sql . 3
tar_sql_deps . 7
tar_sql_raw . 7

Index 11

1

https://github.com/daranzolin/sqltargets
https://github.com/daranzolin/sqltargets/issues

2 sqltargets_option_get

sqltargets sqltargets package

Description

targets extension for SQL files

Details

See the README on GitHub

sqltargets_option_get Get or Set sqltargets Options

Description

Get or Set sqltargets Options

Usage

sqltargets_option_get(option_name)

sqltargets_option_set(option_name, option_value)

Arguments

option_name Character. Option name. See Details.

option_value Value to assign to option ‘x‘.

Details

Available Options

- ‘"sqltargets.template_engine"‘ - Either ’glue’ or ’jinjar’. Determines how the query file should be
parsed.

- ‘"sqltargets.glue_sql_opening_delimiter"‘ - character. Length 1. The opening delimiter passed to
‘glue::glue_sql()‘.

- ‘"sqltargets.glue_sql_closing_delimiter"‘ - character. Length 1. The closing delimiter passed to
‘glue::glue_sql()‘.

- ‘"sqltargets.jinja_block_open"‘ - character. Length 1. The opening delimiter passed to ‘jin-
jar::jinjar_config()‘.

- ‘"sqltargets.jinja_block_close"‘ - character. Length 1. The closing delimiter passed to ‘jin-
jar::jinjar_config()‘.

- ‘"sqltargets.jinja_variable_open"‘ - character. Length 1. The closing delimiter passed to ‘jin-
jar::jinjar_config()‘.

https://github.com/daranzolin/sqltargets#readme

tar_sql 3

- ‘"sqltargets.jinja_variable_close"‘ - character. Length 1. The closing delimiter passed to ‘jin-
jar::jinjar_config()‘.

- ‘"sqltargets.jinja_comment_open"‘ - character. Length 1. The closing delimiter passed to ‘jin-
jar::jinjar_config()‘.

- ‘"sqltargets.jinja_comment_close"‘ - character. Length 1. The closing delimiter passed to ‘jin-
jar::jinjar_config()‘.

Value

No return value, called for side effects

tar_sql Target with a SQL query.

Description

Shorthand to include a SQL query in a ‘targets‘ pipeline.

Usage

tar_sql(
name,
path,
params = list(),
format = targets::tar_option_get("format"),
tidy_eval = targets::tar_option_get("tidy_eval"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with

4 tar_sql

a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

path Character of length 1 to the single ‘*.sql‘ source file to be executed. Defaults to
the working directory of the ‘targets‘ pipeline.

params Code, can be ‘NULL‘. ‘params‘ evaluates to a named list of parameters that are
passed to ‘jinjar::render()‘. The list is quoted (not evaluated until the target runs)
so that upstream targets can serve as parameter values.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

tar_sql 5

• "abridge": any currently running targets keep running, but no new tar-
gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

6 tar_sql

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Details

‘tar_sql()‘ is an alternative to ‘tar_target()‘ for SQL queries that depend on upstream targets. The
SQL source files (‘*.sql‘ files) should mention dependency targets with ‘tar_load()‘ within SQL
comments (’–’). (Do not use ‘tar_load_raw()‘ or ‘tar_read_raw()‘ for this.) Then, ‘tar_sql()‘
defines a special kind of target. It 1. Finds all the ‘tar_load()‘/‘tar_read()‘ dependencies in the
query and inserts them into the target’s command. This enforces the proper dependency relation-
ships. (Do not use ‘tar_load_raw()‘ or ‘tar_read_raw()‘ for this.) 2. Sets ‘format = "file"‘ (see
‘tar_target()‘) so ‘targets‘ watches the files at the returned paths and reruns the query if those files
change. 3. Creates another upstream target to watch the query file for changes ’<target name>
‘sqltargets_option_get("sqltargets.target_file_suffix")‘’.

Value

A data frame

Examples

targets::tar_dir({ # tar_dir() runs code from a temporary directory.
Unparameterized SQL query:
lines <- c(

"-- !preview conn=DBI::dbConnect(RSQLite::SQLite())",
"-- targets::tar_load(data1)",
"-- targets::tar_load(data2)",
"select 1 AS my_col",
""

)
In tar_dir(), not part of the user's file space:
writeLines(lines, "query.sql")
Include the query in a pipeline as follows.
targets::tar_script({

library(tarchetypes)
library(sqltargets)
list(

tar_sql(query, path = "query.sql")
)

}, ask = FALSE)
})

tar_sql_deps 7

tar_sql_deps List SQL query dependencies.

Description

List the target dependencies of one or more SQL queries.

Usage

tar_sql_deps(path)

Arguments

path Character vector, path to one or more SQL queries.

Value

Character vector of the names of targets that are dependencies of the SQL query.

Examples

lines <- c(
"-- !preview conn=DBI::dbConnect(RSQLite::SQLite())",
"-- targets::tar_load(data1)",
"-- targets::tar_read(data2)",
"select 1 as my_col",
""

)
query <- tempfile()
writeLines(lines, query)
tar_sql_deps(query)

tar_sql_raw Target with a SQL query.

Description

Shorthand to include a SQL query in a ‘targets‘ pipeline.

8 tar_sql_raw

Usage

tar_sql_raw(
name,
path = ".",
params = params,
format = format,
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = "main",
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
params_nm = NULL

)

Arguments

name Character of length 1, name of the target. A target name must be a valid name
for a symbol in R, and it must not start with a dot. Subsequent targets can refer to
this name symbolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

path Character of length 1 to the single ‘*.sql‘ source file to be executed. Defaults to
the working directory of the ‘targets‘ pipeline.

params Code, can be ‘NULL‘. ‘params‘ evaluates to a named list of parameters that are
passed to ‘jinjar::render()‘. The list is quoted (not evaluated until the target runs)
so that upstream targets can serve as parameter values.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_sql_raw 9

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

params_nm Character of length 1, name of object passed to ‘params‘.

Details

‘tar_sql()‘ is an alternative to ‘tar_target()‘ for SQL queries that depend on upstream targets. The
SQL source files (‘*.sql‘ files) should mention dependency targets with ‘tar_load()‘ within SQL
comments (’–’). (Do not use ‘tar_load_raw()‘ or ‘tar_read_raw()‘ for this.) Then, ‘tar_sql()‘
defines a special kind of target. It 1. Finds all the ‘tar_load()‘/‘tar_read()‘ dependencies in the
query and inserts them into the target’s command. This enforces the proper dependency relation-
ships. (Do not use ‘tar_load_raw()‘ or ‘tar_read_raw()‘ for this.) 2. Sets ‘format = "file"‘ (see
‘tar_target()‘) so ‘targets‘ watches the files at the returned paths and reruns the query if those files

10 tar_sql_raw

change. 3. Creates another upstream target to watch the query file for changes ’<target name>
‘sqltargets_option_get("sqltargets.target_file_suffix")‘’.

Value

A data frame

Examples

targets::tar_dir({ # tar_dir() runs code from a temporary directory.
Unparameterized SQL query:
lines <- c(
"-- !preview conn=DBI::dbConnect(RSQLite::SQLite())",
"-- targets::tar_load(data1)",
"-- targets::tar_load(data2)",
"select 1 AS my_col",
""

)
In tar_dir(), not part of the user's file space:
writeLines(lines, "query.sql")
Include the query in a pipeline as follows.
targets::tar_script({

library(tarchetypes)
library(sqltargets)
list(

tar_sql(query, path = "query.sql")
)

}, ask = FALSE)
})

Index

∗ SQL query utilities
tar_sql_deps, 7

sqltargets, 2
sqltargets_option_get, 2
sqltargets_option_set

(sqltargets_option_get), 2

tar_group(), 4
tar_make_clustermq(), 5, 6, 9
tar_make_future(), 5, 6, 9
tar_resources_aws(), 4
tar_sql, 3
tar_sql_deps, 7
tar_sql_raw, 7

11

	sqltargets
	sqltargets_option_get
	tar_sql
	tar_sql_deps
	tar_sql_raw
	Index

