Package 'ecostate'

November 25, 2024

```
Type Package
Title State-Space Mass-Balance Model for Marine Ecosystems
Version 0.2.0
Date 2024-11-15
Maintainer James T. Thorson < James. Thorson@noaa.gov>
Description Fits a state-space mass-balance model for marine ecosystems,
      which implements dynamics derived from
      'Ecopath with Ecosim' <a href="https://ecopath.org/">https://ecopath.org/</a>
      while fitting to time-series of fishery catch, biomass indices,
      age-composition samples, and weight-at-age data. Package
      'ecostate' fits biological parameters (e.g., equilibrium mass)
      and measurement parameters (e.g., catchability coefficients)
      jointly with residual variation in process errors, and can include
      Bayesian priors for parameters.
License GPL-3
Depends R (>= 4.1.0), RTMB (>= 1.5.0),
Imports TMB, MASS, checkmate, ggplot2, ggnetwork, igraph
Suggests knitr, rmarkdown
RoxygenNote 7.3.2
VignetteBuilder knitr
LazyData true
URL https://james-thorson-noaa.github.io/ecostate/
BugReports https://github.com/James-Thorson-NOAA/ecostate/issues
NeedsCompilation no
Author James T. Thorson [aut, cre] (<a href="https://orcid.org/0000-0001-7415-1010">https://orcid.org/0000-0001-7415-1010</a>)
Repository CRAN
```

Date/Publication 2024-11-25 11:50:14 UTC

2 abm3pc_sys

Contents

	abm3pc_sys	2
	add_equilibrium	3
	compute_nll	4
	compute_tracer	5
	dBdt	6
	ddirmult	7
	eastern_bering_sea	8
	ecostate	9
	ecostate_control	12
	ginv	14
	logLik.ecostate	14
	ode23	15
	plot_foodweb	15
	print.ecostate	17
	print_ecopars	17
	rk4sys	18
	stanza_settings	18
	whitehouse_2021	20
Index		21

abm3pc_sys

Adams-Bashford-Moulton for system of equations

Description

 $Third-order\ Adams-Bash for d-Moulton\ predictor-corrector\ method.$

Usage

```
abm3pc_sys(f, a, b, y0, n, Pars, ...)
```

f	function in the differential equation $y'=f(x,y)$; defined as a function $R\times R^m\to R^m$, where m is the number of equations.
а	starting time for the interval to integrate
b	ending time for the interval to integrate.
y0	starting values at time a
n	number of steps
Pars	named list of parameters passed to f
	additional inputs to function f

add_equilibrium 3

Details

Combined Adams-Bashford and Adams-Moulton (or: multi-step) method of third order with corrections according to the predictor-corrector approach. Copied from pracma under GPL-3, with small modifications to work with RTMB

Value

List with components x for grid points between a and b and y an n-by-m matrix with solutions for variables in columns, i.e. each row contains one time stamp.

add_equilibrium

Compute equilibrium values

Description

Compute equilibrium values

Usage

```
add_equilibrium(ecoparams, scale_solver, noB_i, type_i)
```

Arguments

ecoparams	list of parameters
scale_solver	Whether to solve for ecotrophic efficiency EE given biomass B ($scale_solver="simple"$) or solve for a combination of EE and B values
noB_i	Boolean vector indicating which taxa have no B value
type_i	character vector indicating whether a taxon is "hetero", "auto", or "detritus"

Details

Replaces NA values in ecotrophic efficiency and/or biomass with equilibrium solution, and then calculates equilibrium consumption, natural mortality, and other rates.

Value

the list of parameters with missing values in ecoparams\$B_i and/or ecoparams\$EE_i filled in, as well as additional values Qe_ij, m0_i, and GE_i

4 compute_nll

compute_nll

Compute negative log-likelihood for EcoState model

Description

Compute negative log-likelihood for EcoState model

Usage

```
compute_nll(
 p,
  taxa,
 years,
 noB_i,
  type_i,
 n_species,
 project_vars,
 DC_ij,
 Bobs_ti,
 Cobs_ti,
 Nobs_ta_g2,
 Wobs_ta_g2,
  log_prior,
  fit_eps,
  fit_nu,
  stanza_data,
  settings,
  control
)
```

p	list of parameters
taxa	Character vector of taxa included in model.
years	Integer-vector of years included in model
noB_i	Boolean vector indicating which taxa have no B value
type_i	character vector indicating whether a taxon is "hetero", "auto", or "detritus"
n_species	number of species
project_vars	function to integrate differential equation
DC_ij	Diet projections matrix
Bobs_ti	formatted matrix of biomass data
Cobs_ti	formatted matrix of catch data
Nobs_ta_g2	formatted list of age-comp data
Wobs_ta_g2	formatted list of weight-at-age data

compute_tracer 5

log_prior	A user-provided function that takes as input the list of parameters out\$obj\$env\$parList() where out is the output from ecostate(), and returns a numeric vector where the sum is the log-prior probability. For example log_prior = function(p) dnorm(p\$logq_i[1], mean=0, sd=0.1, log=TRUE) specifies a lognormal prior
	probability for the catchability coefficient for the first taxa with logmean of zero and logsd of 0.1
fit_eps	Character-vector listing taxa for which the model should estimate annual process errors in dB/dt
fit_nu	Character-vector listing taxa for which the model should estimate annual process errors in consumption Q_ij
stanza_data	output from make_stanza_data
settings	Output from stanza_settings(), used to define age-structured dynamics (called stanza-groups).
control	output from ecostate_control

Details

Given a list of parameters, calculates the joint negative log-likelihood, where the Laplace approximation is then used to marginalize across random effects to calculate the log-marginal likelihood of fixed effects. The joint likelihood includes the fit to fishery catches, biomass indices, age-composition data, weight-at-age data, priors, and the distribution for random effects.

Value

The joint negative log-likelihood including contribution of priors and fit to data.

compute_tracer Calculate tracers, e.g., trophic level

Description

Calculate how a tracer propagates through consumption.

Usage

```
compute_tracer(
   Q_ij,
   inverse_method = c("Penrose_moore", "Standard"),
   type_i,
   tracer_i = rep(1, nrow(Q_ij))
)
```

Arguments

Q_ij Consumption of each prey i by predator j in units biomass.

inverse_method whether to use pseudoinverse or standard inverse
type_i character vector indicating whether a taxon is "hetero", "auto", or "detritus"
tracer_i an indicator matrix specifying the traver value

6 dBdt

Details

Trophic level y_i for each predator i is defined as:

$$\mathbf{y} = l\mathbf{Q}^* + \mathbf{1}$$

where $\mathbf{Q}*$ is the proportion consumption for each predator (column) of different prey (rows). We identify primary producers as any taxa with no consumption (a column of 0s), and assign them as the first trophic level.

More generically, a tracer might be used to track movement of biomass through consumption. For example, if we have a tracer x_i that is 1 for the base of the pelagic food chain, and 0 otherwise, then we can calculate the proportion of pelagic vs. nonpelagic biomass for each taxon:

$$y = lQ^* + x$$

This then allows us to separate alternative components of the foodweb.

Value

The vector

 $\mathbf{y_i}$

resulting from tracer

 $\mathbf{x_i}$

dBdt

Dynamics from EcoSim

Description

Compute system of differential equations representing EcoState dynamics derived from EcoSim.

Usage

```
dBdt(
   Time,
   State,
   Pars,
   type_i,
   n_species,
   F_type = "integrated",
   what = "dBdt"
)
```

ddirmult 7

Arguments

Time not used

State vector of state variables to integrate

Pars list of parameters governing the ODE

type_i type for each taxon
n_species number of species

F_type whether to integrate catches along with biomass ("integrated") or calculate

catches from the Baranov catch equation applied to average biomass ("averaged")

what what output to produce

Details

This function has syntax designed to match pracma solvers.

Value

An object (list) of ranges. Elements include:

G_i Biomass growth per time

g_i Biomass growth per time per biomass

M2_i Consumptive mortality per time

m2_i Consumptive mortality per time per biomass

M_i Natural mortality per time

m_i Natural mortality per time per biomass (i.e., m2_i + m0_i)

Q_ij Consumption per time for prey (rows) by predator (columns)

ddirmult Dirichlet-multinomial

Description

Allows data-weighting as parameter

Usage

```
ddirmult(x, prob, ln_theta, log = TRUE)
```

Arguments

x numeric vector of observations across categories

prob numeric vector of category probabilities

1n_theta logit-ratio of effective and input sample size

log whether to return the log-probability or not

8 eastern_bering_sea

Value

The log-likelihood resulting from the Dirichlet-multinomial distribution

Examples

```
library(RTMB)
prob = rep(0.1,10)
x = rmultinom( n=1, prob=prob, size=20 )[,1]
f = function( ln_theta ) ddirmult(x, prob, ln_theta)
f( 0 )
F = MakeTape(f, 0)
F$jacfun()(0)
```

eastern_bering_sea

eastern Bering Sea ecosystem data

Description

Data used to demonstrate a Model of Intermediate Complexity (MICE) for the eastern Bering Sea. data(eastern_bering_sea) loads a list that includes four components:

- Survey is a long-form data-frame with three columns, providing the Year, Mass (in relative units for most taxa, and million metric tons for Pollock, Cod, Arrowtooth, and NFS), and Taxon for each year with available data
- Catch is a long-form data-frame with three columns, providing the Year, Mass (in million metric tons), and Taxon for each year with available data
- P_over_B is a numeric vector with the unitless ratio of biomass production to population biomass for each taxon
- Q_over_B is a numeric vector with the unitless ratio of biomass consumption to population biomass for each taxon
- Diet_proportions is a numeric matrix where each column lists the proportion of biomass consumed that is provided by each prey (row)

Usage

```
data(eastern_bering_sea)
```

Details

The data compiled come from a variety of sources:

• Northern fur seal (NFS) survey is an absolute index, corrected for proportion of time spent in the eastern Bering Sea. NFS QB is developed from a bioenergetic model and also corrected for seasonal residency. Both are provided by Elizabeth McHuron. It is post-processed in a variety of ways, and not to be treated as an index of abundance for NFS for other uses.

ecostate 9

Pollock, cod, and arrowtooth surveys are from a bottom trawl survey, and cod and arrowtooth
are treated as an absolute index.

- Copepod and other zooplankton are from an oblique tow bongo net survey, with data provided by Dave Kimmel. It is then post-processed to account for spatially and seaonally imbalanced data.
- Other P_over_B, Q_over_B and Diet_proportions values are derived from Rpath models, provided by Andy Whitehouse.
- Primary producers is an annual index of relative biomass, developed from monthly satellite
 measurements and provided by Jens Nielsen. See Thorson et al. (In review) for more details
 regarding data standardization and sources

ecostate

fit EcoState model

Description

Estimate parameters for an EcoState model

Usage

```
ecostate(
  taxa,
 years,
 catch = data.frame(Year = numeric(0), Mass = numeric(0), Taxon = numeric(0)),
 biomass = data.frame(Year = numeric(0), Mass = numeric(0), Taxon = numeric(0)),
 agecomp = list(),
 weight = list(),
 PB,
  QB,
 В,
 DC.
 EE,
  Χ,
  type,
 U,
  fit_B = vector(),
  fit_Q = vector(),
  fit_B0 = vector(),
  fit_EE = vector(),
  fit_PB = vector(),
  fit_QB = vector(),
  fit_eps = vector(),
  fit_nu = vector(),
  log_prior = function(p) 0,
  settings = stanza_settings(taxa = taxa),
  control = ecostate_control()
)
```

10 ecostate

•	•	
	taxa	Character vector of taxa included in model.
	years	Integer-vector of years included in model
	catch	long-form data frame with columns Mass, Year and Taxon
	biomass	long-form data frame with columns Mass, Year and Taxon, where Mass is assumed to have the same units as catch
	agecomp	a named list, with names corresponding to stanza_groups, where each list- element is a matrix with rownames for years and colnames for integer ages, where NA excludes the entry from inclusion and the model computes the likeli- hood across included ages in a given year, and the rowsum is the input-sample size for a given year
	weight	a named list, with names corresponding to stanza_groups, where each list- element is a matrix with rownames for years and colnames for integer ages, where NA excludes the entry from inclusion and the model computes the log- normal likelihood for weight-at-age in each specified age-year combination
	РВ	numeric-vector with names matching taxa, providing the ratio of production to biomass for each taxon
	QB	numeric-vector with names matching taxa, providing the ratio of consumption to biomass for each taxon
	В	numeric-vector with names matching taxa, providing the starting (or fixed) value for equilibrium biomass for each taxon
	DC	numeric-matrix with rownames and colnames matching taxa, where each column provides the diet proportion for a given predator
	EE	numeric-vector with names matching taxa, providing the proportion of production that is subsequently modeled (termed ecotrophic efficiency)
	X	numeric-matrix with rownames and colnames matching taxa, where each element gives the vulnerability parameter for a given interaction.
	type	character-vector with names matching taxa and elements $c("auto", "hetero", "detritus")$, indicating whether each taxon is a primary producer, consumer/predator, or detritus, respectively.
	U	numeric-vector with names matching taxa, providing the proportion of consumption that is unassimilated and therefore exported to detritus
	fit_B	Character-vector listing taxa for which equilibrium biomass is estimated as a fixed effect
	fit_Q	Character-vector listing taxa for which the catchability coefficient is estimated as a fixed effect
	fit_B0	Character-vector listing taxa for which the ratio of initial to equilibrium biomass is estimated as a fixed effect
	fit_EE	Character-vector listing taxa for which ecotrophic efficiency is estimated.
	fit_PB	Character-vector listing taxa for which equilibrium production per biomass is estimated. Note that it is likely a good idea to include a prior for any species for which this is estimated.

ecostate 11

fit_QB	Character-vector listing taxa for which equilibrium consumption per biomass is estimated. Note that it is likely a good idea to include a prior for any species for which this is estimated.
fit_eps	Character-vector listing taxa for which the model should estimate annual process errors in dB/dt
fit_nu	Character-vector listing taxa for which the model should estimate annual process errors in consumption Q_ij
log_prior	A user-provided function that takes as input the list of parameters out\$obj\$env\$parList() where out is the output from ecostate(), and returns a numeric vector where the sum is the log-prior probability. For example log_prior = function(p) dnorm(p\$logq_i[1], mean=0, sd=0.1, log=TRUE) specifies a lognormal prior probability for the catchability coefficient for the first taxa with logmean of zero and logsd of 0.1
settings	Output from stanza_settings(), used to define age-structured dynamics (called stanza-groups).
control	Output from ecostate_control(), used to define user settings.

Details

All taxa must be included in QB, PB, B, and DC, but additional taxa can be in QB, PB, B, and DC that are not in taxa. So taxa can be used to redefine the set of modeled species without changing other inputs

Value

An object (list) of S3-class ecostate. Elements include:

obj RTMB object from MakeADFun

tmb_inputs The list of inputs passed to MakeADFun

opt The output from nlminb

sdrep The output from sdreport

interal Objects useful for package function, i.e., all arguments passed during the call

rep report file, including matrix B_ti for biomass in each year t and taxon i, g_ti for growth rate per biomass, and see dBdt for other quantities reported by year

derived derived quantity estimates and standard errors, for rep objects as requested

call function call record

run_time Total runtime

This S3 class then has functions summary, print, and logLik

References

Introducing the state-space mass-balance model:

Thorson, J. Kristensen, K., Aydin, K., Gaichas, S., Kimmel, D.G., McHuron, E.A., Nielsen, J.N., Townsend, H., Whitehouse, G.A (In press). The benefits of hierarchical ecosystem models: demonstration using a new state-space mass-balance model EcoState. Fish and Fisheries.

12 ecostate_control

ecostate_control

Detailed control for ecostate structure

Description

Define a list of control parameters.

Usage

```
ecostate_control(
  nlminb_loops = 1,
  newton_loops = 0,
  eval.max = 1000,
  iter.max = 1000,
  getsd = TRUE,
  silent = getOption("ecostate.silent", TRUE),
  trace = getOption("ecostate.trace", 0),
  verbose = getOption("ecostate.verbose", FALSE),
  profile = c("logF_ti", "log_winf_z", "s50_z", "srate_z"),
  random = c("epsilon_ti", "alpha_ti", "nu_ti", "phi_tg2"),
  tmb_par = NULL,
  map = NULL,
  getJointPrecision = FALSE,
  integration_method = c("ABM", "RK4", "ode23", "rk4", "lsoda"),
  process_error = c("epsilon", "alpha"),
  n_{steps} = 10,
  F_type = c("integrated", "averaged"),
  derived_quantities = c("h_g2", "B_ti", "B0_i"),
  scale_solver = c("joint", "simple"),
  inverse_method = c("Standard", "Penrose_moore"),
  tmbad.sparse_hessian_compress = 1,
  start_tau = 0.001
)
```

nlminb_loops	Integer number of times to call stats::nlminb().
newton_loops	Integer number of Newton steps to do after running stats::nlminb().
eval.max	Maximum number of evaluations of the objective function allowed. Passed to control in stats::nlminb().
iter.max	$Maximum \ number \ of \ iterations \ allowed. \ Passed \ to \ control \ in \ \verb stats::nlminb() .$
getsd	Boolean indicating whether to call TMB::sdreport()
silent	Disable terminal output for inner optimizer?
trace	Parameter values are printed every trace iteration for the outer optimizer. Passed to control in stats::nlminb().

ecostate_control 13

verbose Output additional messages about model steps during fitting?

profile parameters that are profiled across, passed to MakeADFun

random parameters that are treated as random effects, passed to MakeADFun

tmb_par list of parameters for starting values, with shape identical to tinyVAST(...)\$internal\$parlist

map list of mapping values, passed to RTMB::MakeADFun

getJointPrecision

whether to get the joint precision matrix. Passed to sdreport.

integration_method

What numerical integration method to use. "ABM" uses a native-R versions of Adam-Bashford, "RK4" uses a native-R version of Runge-Kutta-4, and "ode23" uses a native-R version of adaptive Runge-Kutta-23, where all are adapted from pracma functions. "rk4" and 1soda use those methods from deSolve::ode as

implemented by RTMBode::ode

process_error Whether to include process error as a continuous rate (i.e., an "innovation"

parameterization, process_error="epsilon") or as a discrete difference between expected and predicted biomass (i.e., a "state-space" parameterization), process_error="alpha"The former is more interpretable, whereas the latter is

much more computationally efficient.

n_steps number of steps used in the ODE solver for biomass dynamics

F_type whether to integrate catches along with biomass ("integrated") or calculate

catches from the Baranov catch equation applied to average biomass ("averaged")

derived_quantities

character-vector listing objects to ADREPORT

scale_solver Whether to solve for ecotrophic efficiency EE given biomass B (scale_solver="simple")

or solve for a combination of EE and B values

inverse_method whether to use pseudoinverse or standard inverse

tmbad.sparse_hessian_compress

passed to TMB::config(), and enabling an experimental feature to save memory

when first computing the inner Hessian matrix. Using tmbad.sparse_hessian_compress=1

seems to have no effect on the MLE (although users should probably confirm this), and hugely reduces memory use in both small and large models. Using tmbad.sparse_hessian_compress=1 seems to hugely speed up the model-fitting with a large model but results in a small decrease in speed for model-

fitting with a small model.

start_tau Starting value for the standard deviation of process errors

Value

An S3 object of class "ecostate_control" that specifies detailed model settings, allowing user specification while also specifying default values

14 logLik.ecostate

ginv

Penrose-Moore pseudoinverse

Description

Extend MASS: ginv to work with RTMB

Usage

ginv(x)

Arguments

Х

Matrix used to compute pseudoinverse

logLik.ecostate

Marginal log-likelihood

Description

Extract the (marginal) log-likelihood of a ecostate model

Usage

```
## S3 method for class 'ecostate'
logLik(object, ...)
```

Arguments

object Output from ecostate

... Not used

Value

object of class logLik with attributes

val log-likelihood

df number of parameters

Returns an object of class logLik. This has attributes "df" (degrees of freedom) giving the number of (estimated) fixed effects in the model, abd "val" (value) giving the marginal log-likelihood. This class then allows AIC to work as expected.

ode23

od	۹	2	7
υu	C	_	•

Non-stiff (and stiff) ODE solvers

Description

Runge-Kutta (2, 3)-method with variable step size, resp

Usage

```
ode23(f, a, b, y0, n, Pars, rtol = 0.001, atol = 1e-06)
```

Arguments

f	function in the differential equation $y'=f(x,y)$; defined as a function $R\times R^m\to R^m$, where m is the number of equations.
а	starting time for the interval to integrate
b	ending time for the interval to integrate.
у0	starting values at time a
n	Not used
Pars	named list of parameters passed to f
rtol	relative tolerance.
atol	absolute tolerance.

Details

Copied from pracma under GPL-3, with small modifications to work with RTMB. This can be used to simulate dynamics, but not during estimation

Value

List with components t for time points between a and b and y an n-by-m matrix with solutions for variables in columns, i.e. each row contains one time stamp.

Description

Plot consumption as a directed graph including all taxa (vertices) and biomass consumed (arrows). Taxa are located using tracers, where by default the y-axis is trophic level. #'

plot_foodweb

Usage

```
plot_foodweb(
   Q_ij,
   type_i,
   xtracer_i,
   ytracer_i = rep(1, nrow(Q_ij)),
   B_i = rep(1, nrow(Q_ij)),
   taxa_labels = letters[1:nrow(Q_ij)],
   xloc,
   yloc
)
```

Arguments

Q_ij	Consumption of each prey i by predator j in units biomass.
type_i	character vector indicating whether a taxon is "hetero", "auto", or "detritus"
xtracer_i	tracer to use when computing x-axis values
ytracer_i	tracer to use when computing y-axis values
B_i	biomass to use when weighting taxa in plot
taxa_labels	character vector of labels to use for each taxon
xloc	x-axis location (overrides calculation using xtracer_i)
yloc	y-axis location (overrides calculation using ytracer_i)

Details

Trophic level l_i for each predator i is defined as:

$$\mathbf{l} - \mathbf{1} = \mathbf{l}\mathbf{Q}^*$$

where $\mathbf{Q}*$ is the proportion consumption for each predator (column) of different prey (rows). We identify primary producers as any taxa with no consumption (a column of 0s), and assign them as the first trophic level.

Value

invisibly return ggplot object for foodweb

print.ecostate 17

print.ecostate

Print fitted ecostate object

Description

Prints output from fitted ecostate model

Usage

```
## S3 method for class 'ecostate'
print(x, ...)
```

Arguments

x Output from ecostate

... Not used

Value

No return value, called to provide clean terminal output when calling fitted object in terminal.

print_ecopars

Print EcoSim parameters

Description

Prints parameters defining EcoSim dynamics

Usage

```
print_ecopars(x, silent = FALSE)
```

Arguments

x Output from ecostate silent whether to print to terminal

Value

invisibly returns table printed

18 stanza_settings

rk4sys

Classical Runge-Kutta for system of equations

Description

Classical Runge-Kutta of order 4.

Usage

```
rk4sys(f, a, b, y0, n, Pars, ...)
```

Arguments

f	function in the differential equation $y'=f(x,y)$; defined as a function $R\times R^m\to R^m$, where m is the number of equations.
а	starting time for the interval to integrate
b	ending time for the interval to integrate.
y0	starting values at time a
n	the number of steps from a to b.
Pars	named list of parameters passed to f
	additional inputs to function f

Details

Classical Runge-Kutta of order 4 for (systems of) ordinary differential equations with fixed step size. Copied from pracma under GPL-3, with small modifications to work with RTMB

Value

List with components x for grid points between a and b and y an n-by-m matrix with solutions for variables in columns, i.e. each row contains one time stamp.

stanza_	

Detailed control for stanza structure

Description

Define a list of control parameters.

stanza_settings 19

Usage

```
stanza_settings(
 taxa,
 stanza_groups,
 Κ,
 d,
 Wmat,
 Amax,
 SpawnX,
 Leading,
 fit_K = c(),
 fit_d = c(),
 fit_phi = vector(),
 Amat = NULL,
 Wmatslope,
 STEPS_PER_YEAR = 1,
 comp_weight = c("multinom", "dir", "dirmult")
)
```

taxa	Character vector of taxa included in model.
stanza_groups	character-vector with names corresponding to taxa and elements specifying the multi-stanza group (i.e., age-structured population) for a given taxa
K	numeric-vector with names matching unique(stanza_groups), providing the von Bertalanffy growth coefficient for length
d	numeric-vector with names matching unique(stanza_groups), providing the von Bertalanffy allometric consumption-at-weight (default is 2/3)
Wmat	numeric-vector with names matching unique(stanza_groups), providing the weight-at-maturity relative to asymptotic weight
Amax	numeric-vector with names matching names(stanza_groups), providing the maximum age (in units years) for a given taxon (and the oldest taxon for a given stanza_group is treated as a plus-group)
SpawnX	numeric-vector with names matching unique(stanza_groups), providing the larval vulnerability (density dependence) parameter
Leading	Boolean vector with names matching names(stanza_groups), with TRUE for the taxon for which scale (B or EE) is specified or estimated, where this is then calculated deterministically for other taxa for a given stanza_group
fit_K	Character-vector listing stanza_groups for which K is estimated
fit_d	Character-vector listing stanza_groups for which d is estimated (note that this currently does not work)
fit_phi	Character-vector listing stanza_groups for which the model should estimate annual recruitment deviations, representing nonconsumptive variation in larval survival (e.g., oceanographic advection)

20 whitehouse_2021

Amat numeric-vector with names matching unique(stanza_groups), providing the

integer age-at-maturity (in units years)

Wmatslope numeric-vector with names matching unique(stanza_groups), providing the

slope at 0.5 maturity for a logistic maturity-at-weight ogive

STEPS_PER_YEAR integer number of Euler steps per year for calculating integrating individual

weight-at-age

comp_weight method used for weighting age-composition data

Value

An S3 object of class "stanza_settings" that specifies detailed model settings related to age-structured dynamics (e.g., stanzas), allowing user specification while also specifying default values

whitehouse_2021

Full rpath inputs for eastern Bering Sea

Description

All Rpath inputs from Whitehouse et al. 2021

Usage

data(whitehouse_2021)

Index

```
* data
    eastern_bering_sea, 8
    whitehouse_2021, 20
abm3pc_sys, 2
add\_equilibrium, 3
compute_nll, 4
compute_tracer, 5
dBdt, 6
ddirmult, 7
eastern_bering_sea, 8
ecostate, 9, 14, 17
ecostate_control, 5, 12
ecostate_control(), 11
ginv, 14
logLik.ecostate, 14
MakeADFun, 11, 13
nlminb, 11
ode23, 15
plot_foodweb, 15
print.ecostate, 17
print_ecopars, 17
rk4sys, 18
RTMB::MakeADFun, 13
sdreport, 11, 13
stanza_settings, 18
stanza_settings(), 5, 11
stats::nlminb(), 12
TMB::config(), 13
TMB::sdreport(), 12
whitehouse_2021, 20
```