GWlasso: Geographically Weighted Lasso

Performs geographically weighted Lasso regressions. Find optimal bandwidth, fit a geographically weighted lasso or ridge regression, and make predictions. These methods are specially well suited for ecological inferences. Bandwidth selection algorithm is from A. Comber and P. Harris (2018) <doi:10.1007/s10109-018-0280-7>.

Version: 1.0.1
Depends: R (≥ 3.5.0)
Imports: dplyr, ggplot2, ggside, glmnet, GWmodel, lifecycle, magrittr, methods, progress, rlang, sf, tidyr
Suggests: knitr, maps, rmarkdown
Published: 2024-11-22
DOI: 10.32614/CRAN.package.GWlasso
Author: Matthieu Mulot ORCID iD [aut, cre, cph], Sophie Erb ORCID iD [aut]
Maintainer: Matthieu Mulot <matthieu.mulot at gmail.com>
BugReports: https://github.com/nibortolum/GWlasso/issues
License: MIT + file LICENSE
URL: https://github.com/nibortolum/GWlasso, https://nibortolum.github.io/GWlasso/
NeedsCompilation: no
Materials: README NEWS
CRAN checks: GWlasso results

Documentation:

Reference manual: GWlasso.pdf
Vignettes: example_analysis (source, R code)

Downloads:

Package source: GWlasso_1.0.1.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): GWlasso_1.0.1.tgz, r-oldrel (arm64): GWlasso_1.0.1.tgz, r-release (x86_64): GWlasso_1.0.1.tgz, r-oldrel (x86_64): GWlasso_1.0.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=GWlasso to link to this page.